Skip to content

GitLab

  • Menu
Projects Groups Snippets
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in
  • D Disvoise_project
  • Project information
    • Project information
    • Activity
    • Labels
    • Members
  • Repository
    • Repository
    • Files
    • Commits
    • Branches
    • Tags
    • Contributors
    • Graph
    • Compare
  • Issues 1
    • Issues 1
    • List
    • Boards
    • Service Desk
    • Milestones
  • Merge requests 0
    • Merge requests 0
  • CI/CD
    • CI/CD
    • Pipelines
    • Jobs
    • Schedules
  • Deployments
    • Deployments
    • Environments
    • Releases
  • Monitor
    • Monitor
    • Incidents
  • Packages & Registries
    • Packages & Registries
    • Container Registry
  • Analytics
    • Analytics
    • Value stream
    • CI/CD
    • Repository
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Activity
  • Graph
  • Create a new issue
  • Jobs
  • Commits
  • Issue Boards
Collapse sidebar
  • JackingChen
  • Disvoise_project
  • Issues
  • #1

Closed
Open
Created May 27, 2021 by JackingChen@jackMaintainer

實驗小紀錄

Articulation 上的實驗


Articulation 上面我們取了/a/ /u/ /i/ 三個音並算他的level of clustering。 其中定義注音裡面的以下幾個音當作我們分析的目標

a i u
A: j w
A:1 i:1 u:1
A:2 i:2 u:2
A:3 i:3 u:3
A:4 i:4 u:4
A:5 i:5 u:5
i:7 u:7

的結果是:

ijuw, N=5 pearsonr pears_pvalue de-zero_num
FCR 0.106 0.370 74
VSA1 -0.228 0.051 74
F_vals_f1 -0.298 0.010 74
F_vals_f2 -0.200 0.087 74
F_val_mix -0.261 0.025 74
MSB_f1 -0.296 0.011 74
MSB_f2 -0.306 0.008 74

可是如果把屬於滑音的w 和 j拿掉就會變成

iu, N=5 pearsonr pears_pvalue de-zero_num
FCR -0.046 0.724 61
VSA1 -0.090 0.490 61
F_vals_f1 -0.066 0.613 61
F_vals_f2 -0.133 0.308 61
F_val_mix -0.125 0.339 61
MSB_f1 -0.242 0.061 61
MSB_f2 -0.209 0.106 61
MSB_mix -0.261 0.042 61

但是其實如果看MSB (between class variance)好像還是有效的

iu, N=2 pearsonr pears_pvalue de-zero_num
FCR 0.044 0.716 72
VSA1 -0.113 0.346 72
F_vals_f1 -0.117 0.326 72
F_vals_f2 -0.183 0.123 72
F_val_mix -0.182 0.125 72
MSB_f1 -0.251 0.034 72
MSB_f2 -0.262 0.026 72
MSB_mix -0.307 0.009 72

如果硬要把人數衝上來的話還是能達到P-value < 0.01的效果。

將每個音檔都normalize成到-20 db之後 (Formants_people_symb_bymiddle_noextend.pkl)


首先來的是 ijuw 的結果

ijuw, N=5 pearsonr pears_pvalue de-zero_num
FCR 0.160 0.173 74
VSA1 -0.277 0.017 74
F_vals_f1 -0.307 0.008 74
F_vals_f2 -0.298 0.010 74
F_val_mix -0.333 0.004 74
MSB_f1 -0.305 0.008 74
MSB_f2 -0.358 0.002 74
MSB_mix -0.437400779708174 9.75E-05 74

可以看到結果好很多

再來是純粹 u i

iu, N=5 pearsonr pears_pvalue de-zero_num
FCR 0.021633034705749 0.870809645085987 59
VSA1 -0.059403343388301 0.654934246201381 59
F_vals_f1 -0.195101665783303 0.138656774163098 59
F_vals_f2 -0.207914967521422 0.114066247794693 59
F_val_mix -0.24077658921496 0.066210318325618 59
MSB_f1 -0.267597864357962 0.040460924300917 59
MSB_f2 -0.237055564382257 0.070643490923486 59
MSB_mix -0.297294824588028 0.022214795991251 59

MSB_mix 看起來好像堪用了

基於剛剛有正規化的音檔,做另一個調整:在切出每個phoneme出來之前都在前後extend一個window size的大小(做FFT的時候才不會有一個突升突降)


ijuw, N=5 pearsonr pears_pvalue de-zero_num iu, N=5 pearsonr pears_pvalue de-zero_num
FCR 0.288 0.013 74.000 FCR 0.150 0.258 59.000
VSA1 -0.359 0.002 74.000 VSA1 -0.302 0.020 59.000
F_vals_f1 -0.442 0.000 74.000 F_vals_f1 -0.373 0.004 59.000
F_vals_f2 -0.382 0.001 74.000 F_vals_f2 -0.367 0.004 59.000
F_val_mix -0.460 0.000 74.000 F_val_mix -0.450 0.000 59.000
MSB_f1 -0.318 0.006 74.000 MSB_f1 -0.248 0.058 59.000
MSB_f2 -0.386 0.001 74.000 MSB_f2 -0.348 0.007 59.000
MSB_mix -0.459 0.000 74.000 MSB_mix -0.388 0.002 59.000

其實ijuw 跟iu的結果都非常好了

在ASD_doc 跟ASD_kid間的articulation value做t-test


ui doc-kid p-val uwij doc-kid p-val
F_vals_f1 -1.849 0.183 F_vals_f1 -1.265 0.477
F_vals_f2 4.861 0.066 F_vals_f2 6.608 0.125
F_val_mix 3.012 0.371 F_val_mix 5.344 0.316
MSB_f1 -247462.266 0.070 MSB_f1 -343758.748 0.127
MSB_f2 334473.828 0.411 MSB_f2 900484.247 0.208
MSB_mix 87011.563 0.851 MSB_mix 556725.499 0.475
MSW_f1 -16940.267 0.186 MSW_f1 -23758.450 0.036
MSW_f2 -15018.018 0.076 MSW_f2 -9129.176 0.315
MSW_mix -31958.285 0.082 MSW_mix -32887.626 0.059

在比較doc跟kid之間的level of clustering好像不太理想。 首先是不太顯著 再來就是doc在f1的表現跟預期相反,反而是小於kid的,原因出自於doc的MSB(between class variance)拉不開 但其實可以看出within class variance上面可以看出一點端倪

Edited May 28, 2021 by JackingChen
Assignee
Assign to
Time tracking